
Unlock the Potential of
Apache Kafka: Using a
Programmatic Solution
to Overcome Disk Failures

www.acceldata.com

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 2 of 14

Introduction
Kafka is a widely adopted distributed streaming

platform known for its ability to handle large data

streams. But, because of its distributed architecture and

demanding throughput needs, it faces the risk of disk

failures and other issues including network outages,

hardware failures, software bugs, configuration errors,

overload conditions, and security breaches. All these

risks can impact the performance, availability, and data

integrity of the Kafka streaming platform.

This technical whitepaper provides a programmatic

solution to overcome disk failures in Kafka using ZFS

(Zettabyte File System). First, we will discuss the five

advantages of using ZFS to counter the disk failure

problems in Kafka. Then, we will walk through a 11-step

process to implement ZFS as the file system and logical

volume manager for Kafka to ensure data reliability by

protecting against disk failures.

In the Fire and Forget model in Kafka, producers publish

messages to a Kafka topic without waiting for any

acknowledgment or confirmation from the broker or

consumers. Once the message is sent, the producer does

not block or wait for a response and can continue with

its own processing. The Fire and Forget model prioritizes

high throughput and non-blocking communication, but it

comes with the tradeoff of potential data loss if

messages are not successfully processed.

Kafka provides different acknowledgment modes that

producers can configure based on their desired tradeoff

between data reliability and performance. These

acknowledgment modes are defined by the

acknowledgement (”acks") configuration parameter.

The following are the three common acknowledgment

modes:

The Kafka Fire-and-Forget
Model vs. the Three
Acknowledgement Models
in Kafka

1. Acknowledgment All (acks = all)
When using acknowledgment all mode, producers

require acknowledgments from all in-sync replicas

(ISRs) of the topic partition after publishing a

message. The producer waits for acknowledgments

from all replicas before considering the message as

successfully published. This mode provides the

strongest guarantee of data reliability since it

ensures that all replicas have received and

acknowledged the message. It offers the highest

durability but may impact throughput and latency

due to the additional synchronization required.

2. Acknowledgment One (acks = 1)
In acknowledgment one mode, producers require

acknowledgment from the leader replica of the topic

partition after publishing a message. Once the leader

replica successfully receives the message, the

producer considers it as successfully published. This

mode offers a balance between data reliability and

performance. It ensures that at least one replica has

received the message, providing some level of

reliability while maintaining a reasonable level of

throughput.

3. Acknowledgment Minus One
 (acks = -1 or acks = all / -1)
Acknowledgment minus one mode is a combination

of acknowledgment all and acknowledgment one.

With this mode, the producer does not require any

acknowledgments before considering the message

as successfully published. It immediately continues

processing without any acknowledgment delay.

However, it still waits for the message to be written

to the leader replica for durability. This mode offers

the highest throughput but provides the least

guarantee of data reliability since it doesn't require

any acknowledgment...

7 of 23The Best Pricing and Billing Models for Observability Contents �

Additionally, some vendors with a SKU-per-use-case model
under a committed contract don’t support substituting SKUs
before the end of the term, which results in shelfware.

In addition, if an organization pays for 100 APM hosts and
then realizes that they only need 50, some vendors don’t
allow them to switch those 50 APM hosts to another use
case if circumstances change until the end of the contract
term (they’re locked in).

The complex bundle-of-SKUs approach requires customers
to forecast their usage based on historical usage, which can
be challenging, especially for those who are experiencing
rapid growth. The forecasting process also can take months.
This complex forecasting can be further frustrating when hit
by surprise overages.

Because infrastructure-based pricing commitments assume
linear license consumption and are based on individual
products, it has no predictability for scaling. This assumption
isn’t realistic; modern/ephemeral infrastructure changes
with demand. As an organization scales, it may want to
avoid individually negotiating and paying for each SKU with
di�erent pricing models and traps.

In addition, paying for the number of servers and hosts is
challenging in distributed environments of microservices,
containers, serverless, and so on. The number of hosts/
services is exploding. Hosts can double every two to three
years. Cloud adoption can increase the number of hosts
20–50x:

Data centers deploy high-core physical servers.
Cloud deployments favor small virtual machines (VMs)
or servers.
One big physical data center server becomes 20–50
cloud VMs/instances.
Per-host cost can grow from US$15/month to
US$300–US$750/month.

As organizations increase their monitoring coverage, they
have a stair-step expense to an unbounded amount. That
forces them to pay a lot for every incremental host/service or
leave blind spots.

With infrastructure-based pricing, many organizations only
partially instrument their environment—also known as data
sampling—so they can’t get full visibility into their entire
tech stack. Sampling data forces organizations to bet that
they’ll catch the abnormal behavior in the sample, which may
or may not happen.

Most observability vendors—including Cisco AppDynamics, 13
Datadog, 14 Dynatrace, 15 Elastic, 16 and Splunk 17—use host-based,
agent-based, node-based, and other types of infrastructure-
based pricing. All combine infrastructure-based pricing with
telemetry-based pricing (hybrid).

The fact that hybrid host- and telemetry-based pricing is
the most common pricing model for observability vendors
may account for why 34% of 2022 Observability Forecast
respondents said they prefer it. 18

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 3 of 14

...Kafka provides different acknowledgment modes that

producers can configure based on their desired tradeoff

between data reliability and performance. These

acknowledgment modes are defined by the

acknowledgement (”acks") configuration parameter.

The following are the three common acknowledgment

modes:

To summarize:

If acks=0 -> Just fire and forget. Producer won't

wait for an acknowledgement.

If acks=1-> Acknowledgement is sent by the broker

when message is successfully written on the leader.

If acks=all -> Acknowledgement is sent by the

broker when message is successfully written on all

replicas

3. Acknowledgment Minus One
 (acks = -1 or acks = all / -1)

The choice of acknowledgment mode depends on the

desired tradeoff between data reliability and

performance. Acknowledgment all provides the

strongest durability guarantees but may impact latency

and throughput. Acknowledgment one offers a balance

between reliability and performance, while

acknowledgment minus one prioritizes maximum

throughput with potential tradeoffs in data reliability.

The Tradeoff Between
DataThroughput and
Data Reliability
As seen above, the Fire-and-Forget model prioritizes

speed and does not wait for acknowledgments,

which increases throughput but carries a higher risk

of data loss. On the other hand, the acknowledg-

ment modes provide varying levels of reliability by

introducing acknowledgment processes that can

impact latency and potentially reduce throughput.

Ultimately, the choice between the Fire-and-Forget

model and the acknowledgment modes depends on

the specific requirements of the application. If data

loss is unacceptable and higher reliability is crucial,

acknowledgment modes like acknowledgement all or

acknowledgement one are typically used...

7 of 23 The Best Pricing and Billing Models for ObservabilityContents �

Additionally, some vendors with a SKU-per-use-case model
under a committed contract don’t support substituting SKUs
before the end of the term, which results in shelfware.

In addition, if an organization pays for 100 APM hosts and
then realizes that they only need 50, some vendors don’t
allow them to switch those 50 APM hosts to another use
case if circumstances change until the end of the contract
term (they’re locked in).

The complex bundle-of-SKUs approach requires customers
to forecast their usage based on historical usage, which can
be challenging, especially for those who are experiencing
rapid growth. The forecasting process also can take months.
This complex forecasting can be further frustrating when hit
by surprise overages.

Because infrastructure-based pricing commitments assume
linear license consumption and are based on individual
products, it has no predictability for scaling. This assumption
isn’t realistic; modern/ephemeral infrastructure changes
with demand. As an organization scales, it may want to
avoid individually negotiating and paying for each SKU with
di�erent pricing models and traps.

In addition, paying for the number of servers and hosts is
challenging in distributed environments of microservices,
containers, serverless, and so on. The number of hosts/
services is exploding. Hosts can double every two to three
years. Cloud adoption can increase the number of hosts
20–50x:

Data centers deploy high-core physical servers.
Cloud deployments favor small virtual machines (VMs)
or servers.
One big physical data center server becomes 20–50
cloud VMs/instances.
Per-host cost can grow from US$15/month to
US$300–US$750/month.

As organizations increase their monitoring coverage, they
have a stair-step expense to an unbounded amount. That
forces them to pay a lot for every incremental host/service or
leave blind spots.

With infrastructure-based pricing, many organizations only
partially instrument their environment—also known as data
sampling—so they can’t get full visibility into their entire
tech stack. Sampling data forces organizations to bet that
they’ll catch the abnormal behavior in the sample, which may
or may not happen.

Most observability vendors—including Cisco AppDynamics,13
Datadog,14 Dynatrace,15 Elastic,16 and Splunk17—use host-based,
agent-based, node-based, and other types of infrastructure-
based pricing. All combine infrastructure-based pricing with
telemetry-based pricing (hybrid).

The fact that hybrid host- and telemetry-based pricing is
the most common pricing model for observability vendors
may account for why 34% of 2022 Observability Forecast
respondents said they prefer it.18

(Cisco AppDynamics, n.d., “AppDynamics Pricing”)
(Datadog, n.d., “Datadog Pricing”)
(Dynatrace, n.d., “Dynatrace Pricing”)
(Elasticsearch, n.d., Elastic Pricing FAQ)
(Splunk, n.d., “Splunk Observability Pricing”)
(Basteri and Brabham 2022)

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 4 of 14

...However, if maximizing throughput and minimizing

latency are the primary concerns, the Fire-and-Forget

model is used, accepting the associated tradeoff in data

reliability.

The tradeoff lies in the fact that ensuring higher data

reliability typically comes at the cost of reduced data

throughput. Mechanisms like replication,

acknowledgment modes, and synchronization among

replicas introduce additional overhead and latency, which

can impact the overall throughput of the system. On the

other hand, prioritizing higher data throughput may

involve sacrificing some level of reliability, as faster

processing may leave less time for replication or

acknowledgment.

Finding the right balance depends on the specific

requirements of the use case. Some applications may

prioritize maximum throughput, accepting a higher risk

of potential data loss or temporary inconsistencies.

Other use cases, such as financial systems or critical data

pipelines, may prioritize data reliability and durability,

even if it comes at the expense of slightly lower

throughput. Kafka offers configurable parameters like

acknowledgment modes, replication factor, and

durability settings to strike the desired balance between

data throughput and reliability based on the application's

needs.

Problems Resulting From
Disk Failures in Kafka

What is ZFS?

...outages, which can prove to be very expensive for

organizations.

Unpredictable disk crashes on brokers can cause

cluster-wide downtime and affect the availability of

partitions. Restoring a Kafka cluster after a disk

failure may result in some data loss. Without proper

mechanisms in place, there is no built-in parity

solution to recover corrupted data blocks. Disk

failures may require restarting multiple services at

the cluster level. Hence, protecting against disk

failures is a major consideration when implementing

Kafka in production environments in order to ensure

reliability of data.

ZFS (Zettabyte File System) is a combined file

system and logical volume manager originally

developed by Sun Microsystems (and is now owned

by Oracle Corporation). It is an advanced and

scalable file system designed to address the

limitations and challenges of traditional file systems.

ZFS offers a wide range of features and capabilities

that make it popular in various environments,

including enterprise storage systems, data centers,

and high-performance computing. The benefits of

utilizing ZFS as a file system and logical volume

manager include its scalability, robust protection

against data corruption, support for large storage

capacities, efficient data compression, seamless

integration of filesystem and volume management

functionalities, capabilities for snapshots and

copy-on-write clones, continuous integrity checks,

and automatic repairs. Additionally, ZFS provides

software-defined RAID pools to ensure disk

redundancy for enhanced data reliability.

Overall, ZFS provides a robust and scalable file

system solution with features that enhance data

integrity, reliability, and storage management. Its

advanced capabilities make it suitable for a wide

range of applications and storage environments.

Apache Kafka is arguably one of the most popular

open-source distributed streaming platforms today

because of its exceptional capability to handle vast

volumes of data streams. Used by over 80% of the

Fortune 100, it has countless advantages for any

organization that benefits from real-time data, stream

processing, integration, or analytics.

However, due to its inherent design as a distributed

streaming platform, Kafka operates across multiple

nodes and brokers, making it vulnerable to various types

of failures, including disk failures. Disk failures in Kafka

can result in data loss or corruption and cluster...

(Splunk, n.d., “Splunk Observability Pricing”)
(Basteri and Brabham 2022)

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 5 of 14

ZFS as a Programmatic
Solution to Disk Failures in
Kafka

Functionality
Improvements From
Using ZFS with Kafka

Improved Broker Read Performance

...cache, ZFS can store frequently accessed data in

memory, reducing the need to fetch it from disk

repeatedly. This caching mechanism effectively

minimizes latency and accelerates the retrieval of

data, resulting in improved overall broker read

performance.

By leveraging ZFS's file system cache, Kafka can

handle large-scale data streams more efficiently,

enabling faster and more responsive data processing

and consumption. This enhancement in read

performance helps ensure smoother and more

reliable data flow within Kafka, ultimately enhancing

the overall performance and efficiency of the

distributed streaming platform.

ZFS offers an advantageous feature in the form of a

file system cache that significantly improves the read

performance of brokers in Kafka. By utilizing this...

Efficient I/O Utilization
ZFS is designed to utilize I/O efficiently, ensuring

optimal performance and resource utilization.

Efficient I/O utilization is the key advantage of using

ZFS with Kafka.

ZFS is specifically engineered to make efficient use

of I/O operations, resulting in enhanced perfor-

mance and optimized resource utilization. This

efficiency is achieved through various mechanisms

within ZFS, such as adaptive read and write

algorithms, intelligent caching mechanisms, and the

ability to parallelize I/O across multiple disks. By

maximizing I/O efficiency, ZFS minimizes latency

and improves throughput, enabling Kafka to handle

large-scale data streams more effectively. This

translates to faster data processing, reduced bottle-

necks, and improved overall performance of the

Kafka platform.

Whether it's reading data from disk or writing data

to disk, ZFS's efficient I/O utilization ensures that

the system operates at its full potential, delivering

optimal performance for data-intensive workloads in

Kafka deployments.

The main purpose of this whitepaper is to explore the

use of ZFS as a programmatic solution for disk failures in

Kafka. Since ZFS offers numerous benefits such as

efficient I/O utilization, automatic checksumming, and

pooled storage, it is an ideal choice for ensuring data

integrity and availability in Kafka deployments.

Implementing ZFS as the file system and logical volume

manager for Kafka can greatly enhance data reliability

and protection against disk failures. With ZFS, Kafka

benefits from efficient I/O utilization, automatic

checksumming, and pooled storage. By creating

software-defined RAID pools, ZFS ensures data

redundancy and availability, even in the face of disk

failures. Moreover, the flexibility of adding or removing

buffer disks allows for dynamic adaptation to changing

storage requirements.

Let’s explore some of these advantages of using Kafka on

ZFS in detail first, and then we will go through the 11

steps that will help you confidently set up ZFS for Kafka

and leverage its robust features to build a reliable and

resilient streaming platform.

Note: The implementation steps provided in this
whitepaper are a summary and should be adapted to
suit specific system configurations.

Using ZFS with Kafka provides the following

functionality improvements:

The Best Pricing and Billing Models for Observability

Additionally, some vendors with a SKU-per-use-case model
under a committed contract don’t support substituting SKUs
before the end of the term, which results in shelfware.

In addition, if an organization pays for 100 APM hosts and
then realizes that they only need 50, some vendors don’t
allow them to switch those 50 APM hosts to another use
case if circumstances change until the end of the contract
term (they’re locked in).

7 of 23The Best Pricing and Billing Models for Observability Contents �

Additionally, some vendors with a SKU-per-use-case model
under a committed contract don’t support substituting SKUs
before the end of the term, which results in shelfware.

In addition, if an organization pays for 100 APM hosts and
then realizes that they only need 50, some vendors don’t
allow them to switch those 50 APM hosts to another use
case if circumstances change until the end of the contract
term (they’re locked in).

The complex bundle-of-SKUs approach requires customers
to forecast their usage based on historical usage, which can
be challenging, especially for those who are experiencing
rapid growth. The forecasting process also can take months.
This complex forecasting can be further frustrating when hit

Because infrastructure-based pricing commitments assume
linear license consumption and are based on individual
products, it has no predictability for scaling. This assumption
isn’t realistic; modern/ephemeral infrastructure changes
with demand. As an organization scales, it may want to
avoid individually negotiating and paying for each SKU with
di�erent pricing models and traps.

In addition, paying for the number of servers and hosts is
challenging in distributed environments of microservices,
containers, serverless, and so on. The number of hosts/
services is exploding. Hosts can double every two to three
years. Cloud adoption can increase the number of hosts

Data centers deploy high-core physical servers.
Cloud deployments favor small virtual machines (VMs)

One big physical data center server becomes 20–50
cloud VMs/instances.
Per-host cost can grow from US$15/month to
US$300–US$750/month.

As organizations increase their monitoring coverage, they
have a stair-step expense to an unbounded amount. That
forces them to pay a lot for every incremental host/service or
leave blind spots.

With infrastructure-based pricing, many organizations only
partially instrument their environment—also known as data
sampling—so they can’t get full visibility into their entire
tech stack. Sampling data forces organizations to bet that
they’ll catch the abnormal behavior in the sample, which may
or may not happen.

Most observability vendors—including Cisco AppDynamics, 13
Datadog, 14 Dynatrace, 15 Elastic, 16 and Splunk 17—use host-based,
agent-based, node-based, and other types of infrastructure-
based pricing. All combine infrastructure-based pricing with
telemetry-based pricing (hybrid).

The fact that hybrid host- and telemetry-based pricing is
the most common pricing model for observability vendors
may account for why 34% of 2022 Observability Forecast
respondents said they prefer it. 18

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 6 of 14

Pooled Storage

Virtual Volumes

...adapt their storage infrastructure to accommodate

changing data demands, optimizing resource utiliza-

tion and minimizing costs.

By providing seamless volume allocation and deallo-

cation, ZFS simplifies the process of managing

storage volumes in Kafka environments, allowing

organizations to efficiently scale their data process-

ing capabilities while ensuring optimal performance

and operational efficiency.

Snapshots and Clones
ZFS's snapshot and copy-on-write clone capabilities

are powerful features of ZFS that offer efficient

methods for creating point-in-time copies of Kafka

data. These are valuable for various use cases, such

as data backups, testing, and data versioning.

With snapshots, organizations can capture the state

of their data at a specific moment without the need

to copy or duplicate the entire dataset. This enables

easy and efficient data backups, as snapshots only

store the changes made since the snapshot was

taken, saving both time and storage space.

Additionally, snapshots can be used for testing

purposes, allowing developers to experiment with

different configurations or perform regression

testing without impacting the production

environment.

Clones, on the other hand, are writable snapshots

that provide a complete, independent copy of a

dataset. This is useful for creating multiple instances

of a Kafka cluster for different purposes, such as

creating development or testing environments. By

offering these snapshot and clone capabilities, ZFS

simplifies data management and enhances the

flexibility and versatility of Kafka deployments.

Using ZFS with Kafka provides the pooled storage

feature, which enhances data availability and resilience.

With ZFS, storage is pooled, meaning that the failure of

one disk does not impact the entire Zpool.

Hence, the failure of one disk within the pool does not

have a significant impact on the overall storage system.

The data stored in the pool is distributed across multiple

disks, allowing for redundancy and fault tolerance. In the

event of a disk failure, ZFS can automatically reconstruct

the data from the remaining disks in the pool, ensuring

that data availability is maintained and minimizing the

risk of data loss. This pooled storage architecture

enhances the resilience of the storage system, making it

more reliable and suitable for high-performance and

critical data streaming applications like Kafka.

Automatic Checksumming
Using ZFS with Kafka provides a very useful feature

called automatic checksumming. This feature ensures

data integrity by automatically performing checksum

calculations on the stored data. With checksumming,

ZFS can detect if any data blocks become corrupted on

the disks. In the event of a corrupted block, ZFS can use

the parity information to rebuild the block and restore it

to its original state, all without requiring any downtime.

This automatic process helps to maintain data integrity

and minimize the risk of data loss or inconsistencies.

By seamlessly handling and recovering from corrupted

blocks, ZFS provides a reliable and robust solution for

protecting data in Kafka deployments, enhancing the

overall reliability and availability of the system.

One of the key features of ZFS is its support for dynamic

volume management, specifically through the use of

virtual volumes. With virtual volumes, organizations

using Kafka can effortlessly add and remove buffer disks

as needed, enabling flexible and scalable storage

management. This feature empowers users to easily...

7 of 23The Best Pricing and Billing Models for Observability Contents �

Additionally, some vendors with a SKU-per-use-case model
under a committed contract don’t support substituting SKUs
before the end of the term, which results in shelfware.

In addition, if an organization pays for 100 APM hosts and
then realizes that they only need 50, some vendors don’t
allow them to switch those 50 APM hosts to another use
case if circumstances change until the end of the contract
term (they’re locked in).

The complex bundle-of-SKUs approach requires customers
to forecast their usage based on historical usage, which can
be challenging, especially for those who are experiencing
rapid growth. The forecasting process also can take months.
This complex forecasting can be further frustrating when hit

Because infrastructure-based pricing commitments assume
linear license consumption and are based on individual
products, it has no predictability for scaling. This assumption
isn’t realistic; modern/ephemeral infrastructure changes
with demand. As an organization scales, it may want to
avoid individually negotiating and paying for each SKU with
di�erent pricing models and traps.

In addition, paying for the number of servers and hosts is
challenging in distributed environments of microservices,
containers, serverless, and so on. The number of hosts/
services is exploding. Hosts can double every two to three
years. Cloud adoption can increase the number of hosts

Data centers deploy high-core physical servers.
Cloud deployments favor small virtual machines (VMs)

One big physical data center server becomes 20–50
cloud VMs/instances.
Per-host cost can grow from US$15/month to
US$300–US$750/month.

As organizations increase their monitoring coverage, they
have a stair-step expense to an unbounded amount. That
forces them to pay a lot for every incremental host/service or
leave blind spots.

With infrastructure-based pricing, many organizations only
partially instrument their environment—also known as data
sampling—so they can’t get full visibility into their entire
tech stack. Sampling data forces organizations to bet that
they’ll catch the abnormal behavior in the sample, which may
or may not happen.

Most observability vendors—including Cisco AppDynamics, 13
Datadog, 14 Dynatrace, 15 Elastic, 16 and Splunk 17—use host-based,
agent-based, node-based, and other types of infrastructure-
based pricing. All combine infrastructure-based pricing with
telemetry-based pricing (hybrid).

The fact that hybrid host- and telemetry-based pricing is
the most common pricing model for observability vendors
may account for why 34% of 2022 Observability Forecast
respondents said they prefer it. 18

to forecast their usage based on historical usage, which can
be challenging, especially for those who are experiencing
rapid growth. The forecasting process also can take months.
This complex forecasting can be further frustrating when hit
by surprise overages.

Because infrastructure-based pricing commitments assume
linear license consumption and are based on individual
products, it has no predictability for scaling. This assumption
isn’t realistic; modern/ephemeral infrastructure changes
with demand. As an organization scales, it may want to
avoid individually negotiating and paying for each SKU with
di�erent pricing models and traps.

In addition, paying for the number of servers and hosts is
challenging in distributed environments of microservices,
containers, serverless, and so on. The number of hosts/
services is exploding. Hosts can double every two to three
years. Cloud adoption can increase the number of hosts
20–50x:
 • Data centers deploy high-core physical servers.
 • Cloud deployments favor small virtual machines (VMs)

or servers.
 • One big physical data center server becomes 20–50

cloud VMs/instances.
 • Per-host cost can grow from US$15/month to

US$300–US$750/month.

(Cisco AppDynamics, n.d., “AppDynamics Pricing”)

(Elasticsearch, n.d., Elastic Pricing FAQ)
(Splunk, n.d., “Splunk Observability Pricing”)

Data Integrity

ZFS provides extensive protection against data

corruption through its built-in checksumming

mechanism. This ensures that data written to Kafka

topics remains intact and is not compromised during

storage or retrieval.

Data integrity is a critical aspect of any data storage

system, and ZFS excels in this regard. With its built-in

checksumming mechanism, ZFS offers robust protection

against data corruption in Kafka. The checksums are

calculated for each block of data written to Kafka topics,

allowing ZFS to detect and mitigate any potential

corruption issues. This ensures that the integrity of the

data is maintained throughout its lifecycle. By

automatically verifying the integrity of stored data, ZFS

provides peace of mind to users, knowing that their

Kafka data is protected against silent data corruption and

other potential risks.

This advantage of ZFS contributes to the overall

reliability and trustworthiness of Kafka deployments,

minimizing the chances of data loss or compromise. The

data integrity feature of ZFS helps organizations maintain

the consistency and accuracy of their Kafka data, making

it a valuable asset for applications that require high levels

of data reliability.

High Storage Capacities

One of the advantages of ZFS is its support for high

storage capacities, which is particularly beneficial for

Kafka deployments dealing with massive data volumes.

With ZFS, organizations can scale their storage

infrastructure to accommodate the increasing

demands of high-throughput Kafka systems...

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 7 of 14

Advantages of Using ZFS
with Kafka

This capability ensures that Kafka can efficiently

handle and process large-scale data streams without

being constrained by storage limitations. This is

crucial for high-throughput Kafka deployments that

deal with large-scale data streams.

By leveraging ZFS's ability to handle large storage

capacities, organizations can seamlessly expand

their Kafka clusters as data volumes grow, ensuring

continuous and uninterrupted data processing. This

scalability feature of ZFS enables Kafka to operate

effectively in demanding environments where

substantial amounts of data need to be ingested,

processed, and distributed in real-time. Overall,

ZFS's support for high storage capacities empowers

Kafka deployments to handle the challenges posed

by massive data volumes with ease and efficiency.

Efficient Data Compression
Efficient data compression is a notable advantage of

ZFS for Kafka deployments. With ZFS's efficient

data compression algorithms, organizations can

achieve significant reductions in storage space

requirements for Kafka topics. This means that less

physical storage is needed to store the same amount

of data, resulting in improved storage utilization and

potentially reducing costs associated with storage

resources. ZFS employs advanced compression

techniques that efficiently compress data while

maintaining its integrity and minimizing performance

impact.

By compressing data, organizations can store more

data within the same storage infrastructure, allowing

for increased scalability and accommodating larger

data volumes. This advantage not only saves on

storage costs but also enhances overall system

performance by reducing the amount of data that

needs to be read from or written to disk, resulting in

faster data access and improved throughput for

Kafka applications.

The above functionality improvements offer the

following advantages:

(Cisco AppDynamics, n.d., “AppDynamics Pricing”)

(Elasticsearch, n.d., Elastic Pricing FAQ)
(Splunk, n.d., “Splunk Observability Pricing”)

16 (Elasticsearch, n.d., Elastic Pricing FAQ)
17 (Splunk, n.d., “Splunk Observability Pricing”)
18 (Basteri and Brabham 2022)

Data Consistency and Reduced Risk
of Data Corruption

Another significant advantage of ZFS is its ability to

provide data consistency and reduce the risk of data

corruption. ZFS continuously performs integrity checks

on stored data, verifying the integrity of each block using

checksums. If any errors are detected, ZFS automatically

repairs the corrupted blocks using redundant copies or

parity information. This proactive approach to data

integrity ensures that the data remains consistent and

reliable, reducing the chances of data corruption.

By mitigating the risk of data corruption, ZFS enhances

the overall reliability and durability of the data stored in

Kafka deployments. This advantage is particularly crucial

for mission-critical applications where data integrity is

paramount, as it helps maintain the integrity and

accuracy of the data throughout its lifecycle.

Additionally, ZFS's automatic repair mechanism

minimizes the need for manual intervention, simplifying

data management tasks and reducing administrative

overhead.

Data Availability and Durability

Another notable advantage of ZFS is its ability to provide

data availability and durability through software-defined

RAID pools. With these pools, administrators can easily

configure disk redundancy, which safeguards Kafka data

against disk failures. By distributing data across multiple

disks with redundancy, ZFS ensures that even if one disk

fails, the data remains accessible and intact, minimizing

the risk of data loss or service disruption. This high

availability and durability are crucial for Kafka

deployments, as it enables continuous data processing

and minimizes the impact of hardware failures.

ZFS's software-defined approach also offers flexibility in

adapting to changing storage needs, allowing

administrators to add or remove disks from the RAID

pool without disrupting data availability. With ZFS,

organizations can confidently rely on a robust and

resilient storage solution for their Kafka data, ensuring

uninterrupted operations and data integrity.

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 8 of 14

Implementing Kafka
on ZFS
The next few sections will guide you through an

11-step process for implementing ZFS using the

following steps:

1. Check the current version of CentOS installed

on the server.

2. Add the ZFSOnLinux repository using the

provided command.

3. Update the ZFS repository to use kABI as the

module loader.

4. Install the ZFS file system on CentOS 7 using

the given command.

5. Load the ZFS kernel module and verify its

status.

6. Create two ZFS pools (data1 and data2) based

on the server's disk setup.

7. Fine-tune ZFS configurations for better

performance and reliability.

8. Set L2ARC (Level 2 Adaptive Replacement

Cache) configurations for improved caching.

9. Enable auto-import on reboot for ZFS.

10. Reboot the server to finalize the ZFS setup.

11. Set up alerts from Pulse to monitor and receive

notifications for kernel-level errors and disk

issues.

Please note that step 11 mentions setting up alerts
specifically for kernel-level errors and bad sectors
on disks to ensure timely detection and mitigation
of potential issues.

STEP 1: Check the current version of CentOS
installed on the server

To check the current version of CentOS installed on the

server, you can use the command "cat /etc/redhat-re-

lease" in the terminal. This will display the CentOS Linux

release information, including the version number and

any additional details. It helps in identifying the specific

CentOS version running on the server, which is useful for

troubleshooting and ensuring compatibility with software

and updates.

STEP 3: Update the ZFS repository to use kABI
as the module loader

Updating the ZFS repository to use kABI as the

module loader involves disabling the DKMS

(Dynamic Kernel Module System) based repository

and enabling the kABI (Kernel Application Binary

Interface) based repository. This step is important

because using DKMS requires recompiling the ZFS

module every time the CentOS kernel is updated,

while kABI eliminates the need for recompilation. By

enabling kABI, the ZFS module can be loaded into

the kernel without the need for frequent recompila-

tion, providing a more efficient and convenient

solution.

When we install the ZFS repository on CentOS 7,

the DKMS (Dynamic Kernel Module System) based

repository is enabled by default. So we have to

disable the DKMS based repository and enable the

kABI (Kernel Application Binary Interface) based

repository.

Why kABI? DKMS and kABI are two ways a ZFS

module can be loaded into the kernel. If DKMS is

used then if CentOS kernel is ever updated, the ZFS

module will need to be recompiled again. But with

kABI, no recompilation is necessary.

This is the final configuration:

In zfs section set, enabled=0

In zfs-kmod section set, enabled=1

STEP 2: Add the ZFSOnLinux repository using the
provided command

To add the ZFSOnLinux repository, you can use the

provided command: "yum install http://download.zfsonli-

nux.org/epel/zfs-release.el7_9.noarch.rpm". This

command downloads and installs the repository package,

enabling you to access and install the ZFS file system on

your CentOS 7 server.

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 9 of 14

Step-by-Step
Implementation for Using
Kafka on ZFS
The following will guide you through these 11 steps

using screenshots:

7 of 23The Best Pricing and Billing Models for Observability Contents �

Additionally, some vendors with a SKU-per-use-case model
under a committed contract don’t support substituting SKUs
before the end of the term, which results in shelfware.

In addition, if an organization pays for 100 APM hosts and
then realizes that they only need 50, some vendors don’t
allow them to switch those 50 APM hosts to another use
case if circumstances change until the end of the contract
term (they’re locked in).

The complex bundle-of-SKUs approach requires customers
to forecast their usage based on historical usage, which can
be challenging, especially for those who are experiencing
rapid growth. The forecasting process also can take months.
This complex forecasting can be further frustrating when hit
by surprise overages.

Because infrastructure-based pricing commitments assume
linear license consumption and are based on individual
products, it has no predictability for scaling. This assumption
isn’t realistic; modern/ephemeral infrastructure changes
with demand. As an organization scales, it may want to
avoid individually negotiating and paying for each SKU with
di�erent pricing models and traps.

In addition, paying for the number of servers and hosts is
challenging in distributed environments of microservices,
containers, serverless, and so on. The number of hosts/
services is exploding. Hosts can double every two to three
years. Cloud adoption can increase the number of hosts
20–50x:
 • Data centers deploy high-core physical servers.
 • Cloud deployments favor small virtual machines (VMs)

or servers.
 • One big physical data center server becomes 20–50

cloud VMs/instances.
 • Per-host cost can grow from US$15/month to

US$300–US$750/month.

As organizations increase their monitoring coverage, they
have a stair-step expense to an unbounded amount. That
forces them to pay a lot for every incremental host/service or
leave blind spots.

With infrastructure-based pricing, many organizations only
partially instrument their environment—also known as data
sampling—so they can’t get full visibility into their entire
tech stack. Sampling data forces organizations to bet that
they’ll catch the abnormal behavior in the sample, which may
or may not happen.

Most observability vendors—including Cisco AppDynamics, 13
Datadog, 14 Dynatrace, 15 Elastic, 16 and Splunk 17—use host-based,
agent-based, node-based, and other types of infrastructure-
based pricing. All combine infrastructure-based pricing with
telemetry-based pricing (hybrid).

The fact that hybrid host- and telemetry-based pricing is
the most common pricing model for observability vendors
may account for why 34% of 2022 Observability Forecast
respondents said they prefer it. 18

http://download.zfsonlinux.org/epel/zfs-release.el7_9.noarch.rpm
http://download.zfsonlinux.org/epel/zfs-release.el7_9.noarch.rpm

STEP 4: Install the ZFS file system on CentOS 7
using the given command

To install the ZFS file system on CentOS 7, you can use

the command "yum install zfs". This command will

download and install the necessary packages and

dependencies for ZFS. Once the installation is complete,

you can verify the installation by checking the ZFS kernel

module using the "lsmod | grep zfs" command.

STEP 5: Load the ZFS kernel module and verify
its status

To load the ZFS kernel module, run the command

"modprobe zfs" in the terminal. After loading the

module, you can verify its status by running

"lsmod | grep zfs" to check if it appears in the

list of loaded modules. The output should display

information about the ZFS module, confirming that it

has been successfully loaded.

We will choose Raid Pool as all Raid-ZX in ZFS works

similarly with the difference in disk tolerance. The

main difference between Raid-Z1, Raid-Z2 and

Raid-Z3 are they can tolerate a maximum of 1, 2 and

3 disk failure respectively without any data loss.

ashift: This ZFS property allows you to manually set

the sector size on SSD, ashift=12 , means sector size

would be 2^12, 4096 bytes, no penalty to setting

ashift too high but if ashift is set too low, an

astronomical read/write amplification penalty is

incurred—writing a 512 byte "sectors" to a 4KiB real

sector means having to write the first "sector", then

read the 4KiB sector, modify it with the second 512

byte "sector", write it back out to a *new* 4KiB

sector, and so forth, for every single write.

There are three types of pools that can be created in

ZFS:

• Stripped Pool

• Mirrored Pool

• Raid Pool

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 10 of 14

https://www.thegeekdiary.com/zfs-tutorials-creating-zfs-pools-and-file-systems/

sudo zfs set atime=off data1

Disabling atime is a great way to improve I/O

performance on filesystems with lots of small files

that are accessed frequently.

sudo zfs set redundant_metadata=most data1

When set to most, ZFS stores an extra copy of most

types of block metadata. This can improve perfor-

mance of random writes, because less metadata

must be written.

sudo zfs set xattr=off data1

Controls whether extended attributes are enabled

for the ZFS file system.

sudo zfs set exec=off data1

Controls whether processes can be executed from

within this file system.

sudo zfs set overlay=off data1

Set overlay=off on every single pool, for a faster

mount failure recovery.

sudo zfs set atime=off data2
sudo zfs set redundant_metadata=most
data2
sudo zfs set xattr=off data2
sudo zfs set exec=off data2
sudo zfs set overlay=off data2

STEP 6: Create two ZFS pools (data1 and data2)
based on the server's disk setup

Create 2 zpools (data1 and data2) based
on the disk OS is setup:

sudo zpool create -o ashift=12 -f data1
raidz1 sda sdb sdc sdd
sudo zpool create -o ashift=12 -f data2
raidz1 sdf sdg sdh sdi

– OR –

sudo zpool create -o ashift=12 -f data1
raidz1 sdb sdc sdd sde
sudo zpool create -o ashift=12 -f data2
raidz1 sdg sdh sdi sdj

STEP 7: Fine-tune ZFS configurations for better
performance and reliability

In this step, several ZFS configurations are adjusted

to enhance performance and reliability. First, the

"atime" property is disabled to improve I/O

performance for frequently accessed small files.

Second, the "redundant_metadata" property, which

stores an additional copy of most block metadata, is

set to "most" to enhance random write performance.

Third, the extended attributes and process execution

within the "data1" file system are controlled by

disabling "xattr" and "exec" respectively. Lastly, the

"overlay" property is set to "off" on every pool to

expedite mount failure recovery. These fine-tuning

measures aim to achieve better overall performance

and reliability in the ZFS file system.

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 11 of 14

The L2ARC is the 2nd Level Adaptive Replacement

Cache, and is an SSD based cache that is accessed

before reading from the much slower pool disks. The

L2ARC is currently intended for random read workloads.

systemctl enable zfs-import-cache -l
systemctl start zfs-import-cache -l

Additional Context About the 11-step
Implementation

This whitepaper discusses the challenges faced with

normal file systems (such as XFS and ext4 on SSDs)

in a Kafka cluster. When the "acks=0" (Acknowledg-

ment One) configuration is set at the cluster level, a

disk crash on the broker can lead to a cluster outage

and result in leader -1 for affected partitions.

Restoring the cluster incurs data loss when

"unclean.leader.election.enable=true" is set, and

there is no built-in parity mechanism to recover

corrupted data blocks. Multiple cluster-level service

restarts are required in such scenarios.

The proposed resolution suggests an architectural

change from XFS and ext4 to ZFS as the file system.

This change helps in sustaining disk failures and

uncertain outages. Data loss is mitigated through

the use of parity checksums to recover or rebuild

corrupted data blocks. Additionally, the proposed

solution eliminates the need for cluster-level service

restarts, streamlining the recovery process. Howev-

er, it's important to note that the drawback of

implementing ZFS systems is the increased storage

requirement on each node. This includes the need to

allocate space for spare disks and parity, impacting

overall storage capacity.

STEP 8: Set L2ARC (Level 2 Adaptive Replacement
Cache) configurations for improved caching

ZFS setup for Kafka broker is completed now and it can

be used for log.dir /data1 and /data2 with raidz1 to

sustain 1 disk failure.

Important note: Please keep 2 disks in the buffer for the

hot swapping with the bad disk in the zpool.

STEP 10: Alert Setup from Pulse

STEP 9: Enable the auto import on reboot

STEP 11: Setup Alert for any Kernel Level Error
which includes exceptions for bad sector
within the disk before crashing

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 12 of 14

sudo vi /etc/modprobe.d/zfs.conf

7 of 23 The Best Pricing and Billing Models for ObservabilityContents �

Additionally, some vendors with a SKU-per-use-case model
under a committed contract don’t support substituting SKUs
before the end of the term, which results in shelfware.

In addition, if an organization pays for 100 APM hosts and
then realizes that they only need 50, some vendors don’t
allow them to switch those 50 APM hosts to another use
case if circumstances change until the end of the contract
term (they’re locked in).

The complex bundle-of-SKUs approach requires customers
to forecast their usage based on historical usage, which can
be challenging, especially for those who are experiencing
rapid growth. The forecasting process also can take months.
This complex forecasting can be further frustrating when hit

Because infrastructure-based pricing commitments assume
linear license consumption and are based on individual
products, it has no predictability for scaling. This assumption
isn’t realistic; modern/ephemeral infrastructure changes
with demand. As an organization scales, it may want to
avoid individually negotiating and paying for each SKU with
di�erent pricing models and traps.

In addition, paying for the number of servers and hosts is
challenging in distributed environments of microservices,
containers, serverless, and so on. The number of hosts/
services is exploding. Hosts can double every two to three
years. Cloud adoption can increase the number of hosts

Data centers deploy high-core physical servers.
Cloud deployments favor small virtual machines (VMs)

One big physical data center server becomes 20–50
cloud VMs/instances.
Per-host cost can grow from US$15/month to
US$300–US$750/month.

As organizations increase their monitoring coverage, they
have a stair-step expense to an unbounded amount. That
forces them to pay a lot for every incremental host/service or
leave blind spots.

With infrastructure-based pricing, many organizations only
partially instrument their environment—also known as data
sampling—so they can’t get full visibility into their entire
tech stack. Sampling data forces organizations to bet that
they’ll catch the abnormal behavior in the sample, which may
or may not happen.

Most observability vendors—including Cisco AppDynamics,13
Datadog,14 Dynatrace,15 Elastic,16 and Splunk17—use host-based,
agent-based, node-based, and other types of infrastructure-
based pricing. All combine infrastructure-based pricing with
telemetry-based pricing (hybrid).

The fact that hybrid host- and telemetry-based pricing is
the most common pricing model for observability vendors
may account for why 34% of 2022 Observability Forecast
respondents said they prefer it.18

(Cisco AppDynamics, n.d., “AppDynamics Pricing”)

Organizations have to make constant tradeoffs between data throughput/performance and data reliability, and as a result of

these tradeoffs, data teams encounter problems in their data landscapes - such as disk failures in their Kafka environments.

This technical whitepaper offers a programmatic solution to address disk failures in Kafka by leveraging the ZFS (Zettabyte

File System).

In this whitepaper, we explored how Kafka, a popular distributed streaming platform, often faces challenges related to disk

failures and other failures due to its distributed architecture and high throughput requirements. This whitepaper highlights

the notable functionality improvements and key advantages of adopting ZFS with Kafka to tackle these issues and provides

an 11-step guide to implementing ZFS as the file system and logical volume manager for Kafka. By incorporating ZFS,

organizations can enhance data reliability and safeguard against disk failures, ensuring the uninterrupted operation of

Kafka's large-scale data streams.

In recent years, data has become increasingly critical and invaluable across various industries and sectors. As organizations

make constant tradeoffs between data throughput and data reliability, a continuous data observability platform like

Acceldata can be invaluable in helping data engineers and data reliability engineers monitor and optimize data failure
metrics.

Acceldata’s comprehensive, multi-layered data observability platform continually monitors and validates data pipelines

from end to end for both performance bottlenecks and data reliability issues. If a hard disk fails, Acceldata will instantly

recognize the issue, alert the appropriate data engineer or admin so that they can turn care of the situation or can trigger

actions that can automatically remediate the issue. In this day and age, when the reliability and availability of data is

measured in nanoseconds, having the assurance of Acceldata as your continuous and comprehensive data observability is

key.

Summary

Most observability vendors—including Cisco AppDynamics, 13

Datadog, 14 Dynatrace, 15 Elastic, 16 and Splunk 17—use host-based,
agent-based, node-based, and other types of infrastructure-
based pricing. All combine infrastructure-based pricing with
telemetry-based pricing (hybrid).

The fact that hybrid host- and telemetry-based pricing is
the most common pricing model for observability vendors
may account for why 34% of 2022 Observability Forecast
respondents said they prefer it. 18

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 13 of 14

https://www.acceldata.io/blog/12-key-metrics-data-engineer
https://www.acceldata.io/blog/12-key-metrics-data-engineer
https://www.acceldata.io/data-observability-cloud
https://www.acceldata.io/data-reliability

Unlock the Potential of Apache Kafka: Using a Programmatic Solution to Overcome Disk Failures 14 of 14

Acceldata is the market leader in enterprise data observability. With Acceldata’s multi-layered data observability
solution, enterprises gain comprehensive insights into their data stack to improve data quality, pipeline
reliability, compute performance, and spend efficiency. Acceldata is the only multidimensional and industry
agnostic Data Observability solution that presents a clear solution to diverse predicaments.

About Acceldata:

Users

Reliability

Compute

Pipelines

Enterprise
Data Observability

Interested in seeing Acceldata in action? Please
schedule a personalized demonstration or sign up for

a 30-day free trial.

Get started

Our Customers

& many more

© 2023 Acceldata, Inc. www.acceldata.io

https://www.acceldata.io/request-demo

